Четные числа от 1

Чётность в теории чисел

— характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится на два, оно называется чётным (примеры: 2, 28, —8, 40), если нет — нечётным (примеры: 1,3, 75, —19). Ноль считается чётным числом.

Чётное число — целое число, которое делится на 2 без остатка: …−4,−2,0,2,4,6,8,10…

Например 4 это четное число его можно разделить на 2. Это помогает в сложении.

Нечётное число — целое число, которое не делится на 2 без остатка: …−3,−1,1,3,5,7,9…

Иными словами чётное и нечётное — собственные названия классов вычетов и по модулю 2.

Признак чётности

Если в десятичной форме записи последняя цифра числа делится на два без остатка — число чётное. Если не делится — то нечётное.

Арифметика

Сложение и вычитание

  • чётное ± чётное = чётное
  • чётное ± нечётное = нечётное
  • нечётное ± чётное=нечётное
  • нечётное ± нечётное = чётное

Умножение:

  • чётное × чётное = чётное
  • чётное × нечётное = чётное
  • нечётное × нечётное = нечётное

Деление:

  • чётное / чётное — может быть любым
  • чётное / нечётное = чётное, если целое
  • нечётное / чётное — не может быть целым
  • нечётное / нечётное = нечётное, если целое

История и культура

Понятие чётности чисел известно с глубокой древности и ему часто придавалось мистическое значение. Так, в древнекитайской мифологии нечётные числа соответствовали Инь, а чётные — Ян.

В разных странах существуют связанные с количеством даримых цветов традиции, например в США, Европе и некоторых восточных странах считается что чётное количество даримых цветов приносит счастье. В России чётное количество цветов принято приносить лишь на похороны умершим. В случаях когда в букете много цветов чётность или нечётность их количества уже не играет такой роли.

Примечания

  1. См., например, статью «Чётные числа» в большой советской энциклопедии.

ar:أعداد فردية و زوجية bg:Четни и нечетни числа ca:Nombre senar cs:Sudá a lichá čísla da:Lige og ulige tal

el:Άρτιοι και περιττοί αριθμοί

eu:Zenbaki bakoiti

he:מספר זוגי hu:Páros és páratlan számok io:Para e ne-para nombri is:Oddatala

Четные и нечетные числа

Во вселенной существуют пары противоположностей, которые являются важным фактором ее устройства. Основные свойства, которые нумерологи приписывают четным (1, 3, 5, 7, 9) и нечетным (2, 4, 6, 8) числам, как парам противоположностей, следующие:

1 — активный, целеустремленный, властный, черствый, руководящий, инициативный;
2 — пассивный, восприимчивый, слабый, сочувствующий, подчиненный;
3 — яркий, веселый, артистичный, удачливый, легко добивающийся успеха;
4 — трудолюбивый, скучный, безынициативный, несчастный, тяжелый труд и частое поражение;
5 — подвижный, предприимчивый, нервный, неуверенный, сексуальный;
6 — простой, спокойный, домашний, устроенный; материнская любовь;
7 — уход от мира, мистика, тайны;
8 — мирская жизнь; материальная удача или поражение;
9 — интеллектуальное и духовное совершенство.

Нечетные числа обладают гораздо более яркими свойствами. Рядом с энергией «1», блеском и удачливостью «3», авантюрной подвижностью и многогранностью «5», мудростью «7» и совершенством «9» четные числа выглядят не столь ярко. Насчитывается 10 основных пар противоположностей, существующих во Вселенной. Среди этих пар: четное — нечетное, один — много, правое — левое, мужское — женское, добро — зло. Один, правое, мужское и доброе ассоциировалось с нечетными числами; много, левое, женское и злое — с четными.

Нечетные числа обладают некой производящей серединой, в то время как в любом четном числе есть воспринимающее отверстие как бы лакуна внутри себя. Мужские свойства фаллических нечетных чисел вытекают из того факта, что они сильнее четных. Если четное число расщепить пополам, то, кроме пустоты, посередине ничего не останется. Нечетное число разбить непросто, потому что посередине остается точка. Если же соединить вместе четное и нечетное числа, то победит нечетное, так как результат всегда будет нечетным. Именно поэтому нечетные числа обладают мужскими свойствами, властными и резкими, а четные — женскими, пассивными и воспринимающими.

Нечетных чисел нечетное число: их пять. Четных чисел четное число — четыре.

Нечетные числа — солнечные, электрические, кислотные и динамичные. Они являются слагаемыми; их с чем либо складывают. Четные числа — лунные, магнетические, щелочные и статичные. Они являются вычитаемыми, их уменьшают. Они остаются без движения, потому что имеют четные группы пар (2 и 4; 6 и 8).

Если мы сгруппируем нечетные числа, одно число всегда останется без своей пары (1 и 3; 5 и 7; 9). Это делает их динамичными. Два подобных числа (два нечетных числа или два четных) не являются благоприятными.

четное + четное = четное (статичное) 2+2=4
четное + нечетное = нечетное (динамичное) 3+2=5
нечетное + нечетное = четное (статичное) 3+3=6

Некоторые числа дружественны, другие — противостоят друг другу. Взаимоотношения чисел определяются отношениями между планетами, которые ими управляют (подробности в разделе «Совместимость чисел»). Когда два дружественных числа соприкасаются, их сотрудничество не очень продуктивно. Подобно друзьям, они расслабляются — и ничего не происходит. Но когда в одной комбинации находятся враждебные числа, они заставляют друг друга быть настороже и побуждают к активным действиям; таким образом, эти два человека работают намного больше. В таком случае, враждебные числа оказываются на самом деле друзьями, а друзья — настоящими врагами, тормозящими прогресс. Нейтральные числа остаются неактивными. Они не дают поддержки, не вызывают и не подавляют активность.

Применение свойств четности и нечетности чисел при решении тестовых задач в 5-6 классах средней школы

Введение. Понятие чётности очень важно для развития математической культуры школьника. Теоретически это понятие простое и обычно не вызывает трудностей. Задачи же, связанные с чётностью, могут варьироваться от самых простых до очень сложных. Эти зада­чи позволяют на простом материале ввести школьника в разно­образный круг математических идей.

Вводная задача 1. Николай с сыном и Пётр с сыном пошли на рыбалку. Николай поймал столько же рыб, сколько его сын, а Пётр — столько же, сколько его сын. Все вместе поймали 27 рыб. Сколько рыб поймал Николай?

Решение. Сначала кажется, что в задаче не хватает данных: два неизвестных и од­но уравнение. Затем кто-то должен сообразить, что условия задачи проти­воречивы. Действительно, отцы поймали столько же рыб, сколько и сыновья. Но тогда общее число рыб должно быть чётным, а по условию оно нечётно.

Вариант рассуждения: Николай с сыном вместе поймали чётное число рыб. То же верно и для Петра с сыном. Значит, и сумма этих чисел чётна. (Если школьники сами не догадаются до одного из этих соображений, следует им немного подсказать).

Но никакого противоречия нет! К противоречию привело неявное пред­положение о том, что на рыбалке было четыре человека. Но их могло быть и три (Николай — сын или отец Петра). Из условия теперь следует, что все поймали рыб поровну, то есть по 9 штук. С этой задачей (но не с её решением) желательно ознакомить школьников за несколько дней до начала первого занятия.
1. Определение четных и нечетных чисел

Первое занятие по теме «Четность-нечетность» можно начать с забавного вопроса: «Нуль — четное число или нечетное?» Ребята задумываются… Тогда приходится начать дискуссию: «Нуль делится на 2»? Через некоторое время дети отвечают: «Да». Тогда задаю еще раз тот же вопрос: «Так нуль — число четное или нечетное»? И тут уже всё понятно: «Четное»!

Понятие четности чисел известно с глубокой древности и ему часто придавалось мистическое значение. Так, в древнекитайской мифологии нечетные числа соответствовали ян, что означало небо, благоприятность, а четные – это инь, земля, изменчивость, неблагоприятность. В Европе и некоторых восточных странах считается, что четное количество даримых цветов приносит счастье. В России четное количество цветов принято приносить лишь на похороны умершим. В случаях, когда в букете много цветов, четность или нечетность их количества уже не играет такой роли.

Далее идет обсуждение вводной задачи. Она позволяет начать разговор об определении и свойствах чётности. Прежде всего, мы использовали тот факт, что число вида п + п чётно (отцы поймали столько же рыб, сколько сыновья, поэтому вместе они поймали чётное число рыб).

Вот ещё одна задача, иллюстрирующая ту же идею.

Задача 2. Кузнечик прыгал вдоль прямой и вернулся в ис­ходную точку. Все прыжки имеют одинаковую длину. Докажите, что он сделал чётное число прыжков.

Решение. Сколько раз он прыгнул вправо, столько же прыг­нул и влево (так как вернулся в исходную точку)… Откуда следует, что число вида п + п = 2п чётно? А это про­сто определение.

Определение. Целое число называется четным, если оно делится на 2 без остатка, и нечетным, если оно на 2 не делится.

Таким образом, «общий вид» чётного числа 2п, где п — произвольное целое число. Речь идёт именно о целых, а не только о натуральных (то есть целых положительных) числах. В частности, важно понимать, что 0 — тоже чётное число.

Каков же «общий вид» нечётного числа? 2n + 1. Действитель­но, если от нечётного числа отнять 1, то оно станет чётным, то есть нечётное число равно сумме чётного числа 2п и единицы. Часто используется запись нечётного числа и в виде 2п — 1.
2. Свойства четных и нечетных чисел

Свойство 1. Из определения чётного числа сразу следует, что произведе­ние любого (целого) числа на чётное число чётно. Доказательство: k • 2п = 2(kn).

Определение. Два целых числа называются числами одинаковой четности, если оба четные или оба нечетные. Два целых числа называют числами разной четности, если одно из них четное, а другое нечетное.

Свойство 3. Сумма двух чисел разной чётности нечётна.

Доказательство: 2k + 2п + 1 = 2(k + п) + 1 = 2m + 1, где m = k + п – целое число. Сумма нечетна.

Свойство 4. Сумма двух чисел одной чётности чётна.

Доказательство: 2k + 2п = 2(k + п) = 2m, где m = k + п — целое число. Таким образом, сумма — четное число.

2k + 1 + 2п + 1 = 2(k + п + 1) = 2m, где m = k + п + 1 — целое число. Таким образом, сумма — четное число.

Обратные утверждения. Затем можно предложить ребятам сформулировать и доказать утверждения, обратные утверждениям о четности суммы.

Если сумма двух чисел нечётна, то слагаемые имеют разную чётность. Доказательство. Действительно, если бы они имели оди­наковую чётность, то сумма была бы чётной.

Если сумма двух чисел чётна, то слагаемые имеют одинако­вую чётность. Доказательство аналогично.

Перейдем к следующему свойству четных и нечетных чисел.

Задача 3 (подготовительная). Сумма трех чисел нечётна. Сколько слагаемых нечётно? Ответ: одно или три.

Решение. Нетрудно привести примеры, показывающие, что оба случая возможны. Остальные два случая (нечётных слагае­мых два или их нет совсем) легко приводятся к противоречию. Теперь можно перейти к наиболее общей формулировке.

Свойство 5. Чётность суммы совпадает с чётностью количества не­чётных слагаемых.

Аналогичные рассуждения приводятся для нечетного количества нечетных слагаемых. Учащиеся делают вывод: нечетность суммы совпадает с нечетностью количества нечетных слагаемых.
3. Задачи на применение свойств четности и нечетности

Задача 4. Хозяйка купила общую тетрадь объемом 96 листов и пронумеровала все ее страницы по порядку числами от 1 до 192. Щенок Антошка выгрыз из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. Могло ли у него получиться 1990?

Решение. На каждом листе сумма номеров страниц нечетна, а сумма 25 нечетных чисел – нечетна. Поэтому число 1990 у Антошки получиться не могло.

Задача 5. В школе 1688 учащихся, причем мальчиков на 373 больше, чем девочек. Доказать, что такого не может быть.

Решение. Если девочек х, то всего учеников 2х + 373, а это число нечетное как сумма четного и нечетного чисел.

Задача 6. Четно или нечетно число 1 – 2 + 3 – 4 + 5 – 6 + … + 993?

Задача 7. В ряд выписаны числа от 1 до 10. Можно ли расставить между ними знаки плюс и минус, чтобы получилось выражение, равное нулю?

Задача 8. Можно ли разменять 100 рублей при помощи 25 монет достоинством 1 и 5 рублей?

Решение. Нет, т.к. сумма нечетного количества нечетных слагаемых — нечетное число.

Задача 9. В пятиэтажном доме с четырьмя подъездами подсчитали число жителей на каждом этаже и, кроме того, в каждом подъезде. Могут ли все полученные 9 чисел быть нечетными?

Решение. Обозначим число жителей на этажах соответственно через a1, a2, a3, a4, a5, a число жителей в подъездах соответственно через b1, b2, b3, b4. Тогда общее число жителей дома можно подсчитать двумя способами — по этажам и по подъездам:

a1 + a2 + a3 + a4 + a5 = b1 + b2 + b3 + b4. Если бы все эти 9 чисел были нечетными, то сумма в левой части записанного равенства была бы нечетной, а сумма в правой части — четной. Следовательно, это невозможно.

Задача 10. Верно ли равенство 1 2 + 2 3 + 3 4 + … + 99 100 = 20002007?

Решение. Произведения четного и нечетного чисел четны, а сумма четных слагаемых всегда четна.

Задача 11. Четна или нечетна сумма всех натуральных чисел от 1 до 17?

Решение. Из 17 натуральных чисел 8 четных: 2, 4, 6, 8, 10, 12, 14, 16, а остальные 9 чисел нечетны. Сумма всех этих четных чисел четна, а сумма девяти нечетных — нечетна. Тогда сумма всех 17 чисел нечетна как сумма четного и нечетного чисел.

Задача 12. Кузнечик прыгает по прямой: первый раз на 1 см, второй раз на 2 см и т.д. Может ли он через 25 прыжков вернуться на прежнее место?

Решение. Чтобы вернуться на старое место, общее количество сантиметров должно быть четно, а сумма 1 + 2 + 3 + … + 25 нечетна. Поэтому вернуться на прежнее место кузнечик не сможет.

Задачи для самостоятельного решения

Задача 13. Можно ли разменять 25 рублей десятью монетами достоинством 1, 3 и 5 руб.?

Решение. Если мы сложим четное число каких-либо целых чисел, то получим число четное, а 25 — нечетное число. Поэтому разменять 25 руб. таким образом нельзя.

Задача 14. В магазин «Все для собак и кошек» привезли новые игрушки. Могут ли десять игрушек ценой в 3, 5 или 7 рублей стоить в сумме 53 рубля?

Решение. Сумма четного количества нечетных чисел четна. У нас есть 10 чисел (цена одной игрушки), все они нечетные, значит, их сумма должна быть четна. Но 53 – число нечетное, поэтому получить его в виде суммы 10 нечетных чисел нельзя.

Задача 15. У Антона было 5 плиток шоколада. Может ли Антон, поделив каждую плитку на 9, 15 или 25 кусочков, получить всего 100 кусков шоколада?

Решение. Нет, т.к. если сложить 5 нечетных чисел, получим нечетный результат. А число 100 четно.

Задача 16. У Нины было 11 плиток шоколада фабрики «Краскон». Может ли Нина, поделив каждую плитку на 7, 13 или 21 кусочков, получить всего 100 кусков шоколада?

Решение. Нет, т.к. если сложить 11 нечетных чисел, получим нечетный результат, а 100 — четное число.

Задача 17. Доказать, что в равенстве 1 ? 2 ? 3 ? 4 ? 5 ? 6 ? 7 ? 8 ? 9 =20, «?» — это знаки плюс или минус, допущена ошибка.

Решение. В выражении нечетное количество нечетных чисел. Ответ должен быть нечетным числом.
4. Задачи на чередование

Свойства чередования:

  1. Если в некоторой замкнутой цепочке чередуются объекты двух видов, то их четное число (и каждого вида поровну).
  2. Если в некоторой замкнутой цепочке чередуются объекты двух видов:
  • начало и конец цепочки разных видов, то в ней четное число объектов;
  • начало и конец одного вида, то нечетное число.

3. Обратно: по четности длины чередующейся цепочки можно узнать, одного или разных видов её начало и конец.

Задача 18. Может ли вращаться система из 7 шестеренок, если первая сцеплена со второй, вторая с третьей и т.д., а седьмая сцеплена с первой?

Решение. Нет. Если первая вращается по часовой стрелке, то все нечетные шестеренки должны вращаться по часовой стрелке, а первая и седьмая одновременно вращаться по часовой стрелке не могут.

Задача 19. Может ли конь пройти с поля a1 на поле h8, побывав по дороге на каждом из остальных полей ровно один раз?

Решение. Нет, не может. Так как конь должен сделать 63 хода, то последним (нечетным) ходом он встанет на поле другой четности, нежели a1; но h8 имеет тот же цвет.

Задача 20. Все костяшки домино выложили (соблюдая правила игры) в одну длинную цепь. На одном конце этой цепи оказалось 5 очков. Сколько очков может быть на другом конце цепи?

Решение. Если где-то лежит костяшка ∗ − 5, то рядом с ней лежит костяшка 5 − ∗ — возникает разбиение на пары. Сколько костяшек с пятеркой всего? Все ли они в этом разбиении на пары участвуют?
Задачи на разбиение на пары

Свойство: если предметы можно разбить на пары, то их количество четно.

Задача 21. Можно ли нарисовать 9 — звенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?

Решение. Если бы такое было возможно, то все звенья ломаной разбились бы на пары пересекающихся. Однако тогда число звеньев должно быть четным.

Задача 22. Семь тринадцатируков с планеты Тринадцатирук решили устроить турнир по армреслингу. Смогут ли они одновременно провести поединки для всех своих рук, чтобы все руки принимали участие, и в каждом поединке встречалось ровно две руки?

Решение. Тринадцатируки не смогут провести поединки для всех рук одновременно, так как в каждом поединке принимает участие две руки, а всего рук 13 · 7 = 91.

Задача 23. В народной дружине 100 человек и каждый вечер трое из них идут на дежурство. Может ли через некоторое время оказаться так, что каждый с каждым дежурил ровно один раз?

Решение. Так как на каждом дежурстве, в котором участвует данный человек, он дежурит с двумя другими, то всех остальных можно разбить на пары. Однако 99 – нечетное число.

Как правильно объяснить ребенку четные и нечетные числа?

Цифры и числа. Их существует великое множество. Для маленького школьника это бесконечны крючки, загогулины и кружочки. Только-только начиная их осваивать, он узнает, что, оказывается, кроме просто чисел еще есть «четные» и «нечетные». Что это такое и как же все запомнить? Без помощи мамы и папы тут не обойтись. Наша статья даст вам полезные советы, как можно быстро в форме игры объяснить ребенку, что есть что.

Как легко и просто объяснить ребенку четные и нечетные числа

Итак, что следует предпринять заботливым родителям, желающим научить малыша отличать один вид чисел от других:

  1. Для начала, позаботьтесь о том, чтобы ваше чадо хорошо запомнило последовательность цифр. Сыграйте с ним в игру «Мои числа – твои числа». Правила просты: скажите ребенку, что вы назовете самую первую цифру – 1. А его задачей является назвать следующую. Затем опять идет ваша очередь, потом его. И так, чередуясь, вы последовательно назовете числовой ряд. Затем поменяйтесь местами. Пусть ребенок начинает называть. Как показывает практика, во время игры процесс запоминания происходит быстрее и эффективнее.
  2. После того, как первый этап успешно пройден, перейдите к наглядной демонстрации, что такое чет и нечет. Возьмите две емкости, например, тарелки, и сыпучий материал: рис, горох, фасоль, все, что найдете дома. Возьмите сначала две горошины. Предложите ребенку разделить их между двумя вашими тарелками. Такую задачу получится выполнить без проблем. А теперь возьмите три единицы продукта. Увидев озадаченное лицо маленького ученика, объясните ему, что двойку можно легко разделить пополам, а вот с тройкой дело обстоит сложнее. Как бы вы не пытались, пополам три горошины не разложатся. То же самое проделайте с другими числами, как четными, так и нечетными. Обычно дети хорошо понимают то, что смогли увидеть собственными глазами.
  3. Постоянные тренировки и повторение.

Когда ребенок хорошо запомнит последовательность, название чисел и их графическое выражение, используйте эти знания везде, где находитесь. Например, можете называть вслух номера домов и спрашивать, четное это число или нечетное. В игре можно использовать ценники в магазинах, количество собак у тети Клавы, количество конфет, которые мама достала к чаю. Простор для фантазии в данном случае безграничен.

Объяснять школьнику понятия, которые для него являются новыми и неизвестными, задача не самая простая. Но важно проявить терпение и сделать процесс обучения интересным, чтобы не отбить у ребенка стремление к знаниям.

Как научить ребенка считать часть 2 статья по математике по теме

Цифры в их графической форме. Прежде чем показать ребенку абстрактные символы, обозначающие числа, нужно, чтобы он научился хорошо считать. В противном случае он уподобится большинству из нас (а это нежелательно!): счет будет означать для него лишь игру абстрактными символами. Представьте себе человека, для которого слова «банан», «стул», «ботинок» ассоциируются исключительно с их письменной формой, а не с конкретными предметами. Такой человек в действительности ничего не знал бы об окружающем его мире, и его знакомство с языком было бы поверхностным и бесполезным. Как он напоминает всех тех, кто в ужасе замирает при слове «математика». Такие люди знают символы, но не поняли по-настоящему, зачем они нужны и что символизируют!
Как и в случае с алфавитом, есть дети, которых очень увлекает процедура придания имени абстрактному символу. Они моментально выучивают цифры, достаточно их несколько раз им показать. Но есть и другие дети, которые, умея хорошо считать, не могут запомнить, какая цифра соответствует какому числу. Потому что это им неинтересно! Вот игра, которая должна им понравиться.
Сначала покажите малышу рисунок с тремя первыми цифрами. Когда он их выучит, вознаградите его, включив в игру четвертый персонаж. По-прежнему используйте только вопросительную форму. Только в этом случае число будет называть он, а не вы. Когда ребенок выучит цифры с маленькими рисунками, покажите ему те же. цифры, но без рисунков. Напомните малышу текст, если он его забудет. Таким способом даже самый упрямый ребенок быстро выучит цифры. НО ПЕРЕХОДИТЕ К ЦИФРАМ ТОЛЬКО ТОГДА, КОГДА ОН НАУЧИТСЯ НАЗЫВАТЬ ЧИСЛА И СЧИТАТЬ!

С. Лупан. Поверь в свое дитя. «Дельта»,Спб. — 494

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *