Как изобрели электричество для детей

Последовательность в открытии электричества

Электричество — это вид энергии, которую не требовалось изобретать, а только обнаружить и изучить. История отдает должное первооткрывателю Бенджамину Франклину, именно его эксперименты помогли установить связь между молнией и электричеством. Хотя на самом деле, правда об открытии электроэнергии намного сложнее, поскольку в ее истории не существует единого определяющего момента, дающего прямой ответ на вопрос, кто изобрёл электричество.

История

То, как люди стали производить, распределять и использовать электроэнергию и устройства, на которых протекают процессы генерации, является кульминацией почти 300 летней истории исследований и разработок электричества.

История открытия

Сегодня ученые считают, что человечество начало использовать электроэнергию намного раньше. Примерно в 600 году до н.э. древние греки обнаружили, что потирание меха на янтаре вызывает притяжение между ними. Это явление демонстрирует статическое электричество, которое полностью описали ученые в 17 веке в пояснениях, как появляется электричество.

Кроме того, исследователи и археологи в 1930-х годах обнаружили горшки с листами меди внутри, и объяснили их происхождение, как древние батареи, предназначенные для получения света в древнеримских местах. Подобные устройства также были найдены в археологических раскопках возле Багдада, а это означает, что древние персы также могли открыть конструкцию ранней формы батарей.

Кто изобрёл электричество

К 17 веку было сделано много открытий, связанных с электричеством, таких как изобретение раннего электростатического генератора, разграничение положительных и отрицательных зарядов и классификация материалов в качестве проводников или изоляторов.

Важно! В 1600 году английский врач Уильям Гилберт использовал латинское слово «electricus», чтобы описать силу, которую некоторые вещества создают, если их потереть друг с другом. Чуть позже другой английский ученый Томас Браун, написал несколько книг с использованием термина «электричество», чтобы описать свои исследования, основанные на работе Гилберта.

Кто изобрел электричество

Изобретение электричества в 19 веке стало возможным благодаря открытиям целой плеяды великих ученых. В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — это одно и то же.

Эксперимент Бена Франклина

Итальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, а в 1800 году он создал гальванический элемент, раннюю электрическую батарею, вырабатывающую постоянный электроток. Он также выполнил первую передачу тока на расстояние, связав положительно и отрицательно заряженные разъемы и создав между ними напряжение. Поэтому многие историки считают, что 1800 — это год изобретения электричества.

В 1831 году электричество стало возможно использовать в технике, когда Майкл Фарадей создал электродинамо, решившее на практике проблему генерирования постоянного электротока. Довольно простое изобретение с использованием магнита, перемещавшегося внутри катушки из медного провода, создавал небольшой ток, протекающий через провод. Оно помогло американцу Томасу Эдисону и британскому ученому Джозефу Свону, каждому в отдельности, примерно в одно время в 1878 году изобрести лампу накаливания. Сами лампочки для освещения были изобретены другими исследователями, но лампа накаливания была первым практичным устройством, дававшем свет в течение нескольких часов подряд.

Русский ученый и инженер А. Н. Лодыгин

В 1800-х и в начале 1900-х годов, сербско-американский инженер, изобретатель и мастер электротехники Никола Тесла стал одним из авторов зарождения коммерческого электричества. Он работал совместно с Эдисоном, сделал много революционных разработок в области электромагнетизма и хорошо известен своей работой с двигателями переменного тока и многофазной системой распределения энергии.

Обратите внимание! Русский ученый и инженер А. Н. Лодыгин изобрел и запатентовал в 1874 г. лампу освещения, где функцию нити накаливания выполнял угольный стержень, размещенный в вакуумной среде сосуда, изготовленного из стекла. Это были первые лампочки освещения в России. Только через 16 лет в 1890-х гг. он применил нить из тугоплавкого металла — вольфрама.

Однозначно нельзя заявить в каком году появился свет. Несмотря на то, что многие историки считают что лампочка была изобретена американцем Эдисоном, тем не менее первая лампа с платиновой нитью накаливания в вакуумном стеклянном сосуде была изобретена в 1840 изобретателем из Англии Де ла Рю.

Дополнительная информация. Российскому ученому П. Н. Яблочкову россияне были благодарны за возникновение электродуговой лампы и хотя ресурс ее работы не превышал 4 часов, осветительный прибор широко использовался на территории Зимнего дворца почти 5 лет.

Электродуговая лампа П.Н.Яблочкова

Кто является основоположниками науки об электричестве

Вот список некоторых известных ученых, сделавших свой вклад в развитии электроэнергии.

Французский физик Андре Мари Ампер

Основоположниками науки об электричестве являются:

  1. Французский физик Андре Мари Ампер, 1775-1836, работавший по электромагнетизму. Единица тока в системе СИ — ампер, названа в его честь.
  2. Французский физик Чарльз Августин из Кулона, 1736-1806, который был пионером в исследованиях трения и вязкости, распределения заряда на поверхностях и законов электрической и магнитной силы. Его именем названа единица заряда в системе СИ — кулон и закон Кулона.
  3. Итальянский физик Алессандро Вольта, 1745-1827, тот кто изобрел источник постоянного тока, награжден Нобелевской премией по физике 1921 года, в системе СИ единица напряжения — вольт, названа в его честь.
  4. Георг Симон Ом, 1789-1854, немецкий физик, первооткрыватель, оказавший влияние на развитие теории электричества, в частности закона Ома. В системе СИ единица сопротивления — ом, названа в его честь.
  5. Густав Роберт Кирхгоф, 1824-1887, немецкий физик, внесший вклад в фундаментальное понимание электрических цепей, известен своими двумя законами по теории цепей.
  6. Генрих Герц, 1857-1894, немецкий физик, демонстрирующий существование электромагнитных волн. В системе СИ единица частоты — Герц названа в его честь.
  7. Джеймс Клерк Максвелл,1831-1879, шотландский математик и физик, сформулировал систему уравнений об основных законах электричества и магнетизма, названную уравнениями Максвелла.
  8. Майкл Фарадей, 1791-1867, английский химик и физик, основоположник закона индукции. Один из лучших экспериментаторов в истории науки, его обычно считают отцом электротехники. Единица емкости в системе СИ — постоянная Фарадея, названа в его честь.
  9. Томас Эдисон, 1847-1931, американский изобретатель, имеющий более 1000 патентов, наиболее известен разработкой лампы накаливания.

Томас Эдисон

Теории и законы электричества

Общие законы, регулирующие электричество, немногочисленны и просты и применяются неограниченным количеством вариантов.

Закон Ома

Закон Ома — ток, проходящий через проводник между двумя точками, прямо пропорционален напряжению между ними.

I = V / R или V = IR или R = V / I

Где:

I — ток через провод в амперах;

V — напряжение, измеренное на проводнике в вольтах;

R — сопротивление провода в Ом.

В частности, он также гласит, что R в этом отношении постоянна, не зависит от тока.

Закон Ватта, подобно закону Ома, подтверждает связь между мощностью (ваттами), током и напряжением: P = VI или P = I 2 R.

Закон Кирхгофа (KCL) доказывает, что суммарный ток или заряд, поступающий в соединение или узел, в точности равен заряду, покидающему узел, поскольку ему некуда деться, кроме как уйти, поскольку внутри узла заряд не может быть поглощён. Другими словами, алгебраическая сумма всех токов, входящих и выходящих из узла, должна быть равна нулю.

Закон Фарадея гласит о том, что индуцированная электродвижущая сила в любой замкнутой цепи равна отрицательному значению временной скорости изменения магнитного потока, заключенного в ней.

Закон Ленца утверждает, что направление тока, индуцированного в проводе изменяющимся магнитным полем по фарадеевскому закону, создаст магнитное поле, противостоящее изменению, которое его вызвало. Проще говоря, размер эдс, индуцированной в цепи, пропорциональна скорости изменения потока.

Закон Гаусса гласит, что суммарный электрический поток с замкнутой поверхности равен вложенному заряду, деленному на диэлектрическую проницаемость.

Какое было первое электрическое изобретение

В 1731 году в «Философских трудах», издании «Королевского общества», появилась статья, сделавшая гигантский скачок вперед для молодой электротехники. Ее автор английский ученый Стивен Грей (1670-1736), проводя эксперименты по передаче электрического тока на расстояние, случайно обнаружил, что не все материалы обладают способностью передавать электричество одинаково.

Создание Лейденской банки

Далее произошло создание аккумулятора — «Лейденской банки», устройства для хранения статического электричества. Процесс был случайно обнаружен и исследован голландским физиком Питером Ван Мюссенбруком из Лейденского университета в 1746 году и независимо от него немецким изобретателем Эвальдом Георгом фон Клейстом в 1745 году. Примерно в этот же период русские учёные Г. В. Рихман и М. В. Ломоносов проводили работы по изучению атмосферного электричества.

Когда появилось электричество на территории России

Практически электрическое освещение в России появилось в 1879 на Литейном мосте в Петербурге, а официально — в 1880, с созданием 1-го электротехнического отдела, занимавшегося внедрением электричества в экономику государства. В 1881 Царское село было освещено электрическими фонарями. Лампы накаливания в Кремле в 1881 г осветили вступления на трон Александра III.

Энергетика России 2018

Прообраз российской энергосистемы был создан в 1886 г с основанием промышленно-коммерческого общества. В его планы входила электрификация населенных пунктов: улиц, заводов, магазинов и жилых домов. Первая крупная электрическая станция начала свою работу в 1888 г. в Зимнем дворце и на протяжении 15 лет считалась самой мощной в Европе. К 1917 г. в столице уже было электрифицировано около 30% домов. Далее развитие энергетики в СССР шло по плану ГОЭЛРО принятого 22 декабря 1920 года. Этот день до сих пор отмечается в России и странах СНГ, как День энергетика. План во многом позаимствовал наработки российских специалистов 1916 года. Благодаря ему была увеличена выработка электроэнергии, а к 1932 г. она возросла с 2 до 13,5 млрд кВт.

В 1960 г. уровень выработки электроэнергии составил 197.0 млрд. кВт-часов, и далее он продолжал неуклонно расти. Ежегодно в стране вводились новые энергетические мощности: ГРЭС, ТЭЦ, КЭС, ГЭС и АЭС. Суммарная их мощность к концу 1980 составила 266.7 тыс. МВт, а выработка электрической энергии в СССР достигла рекордных 1293.9 млрд. кВт∙ч.

После развала СССР, Россия продолжала наращивать темп развития энергетики, по результатам 2018 года выработка электроэнергии в стране составила −1091 млрд. кВт∙ч, что позволило стране войти в четверку мировых лидеров после Китая, США и Индии.

Когда появилось электричество

Активное использование электрического тока началось лишь в 20 веке, а до этого все ограничивалось опытами и исследованиями, проводимыми отдельными учеными из разных стран. Когда появилось электричество не имеет однозначного ответа, поскольку первые понятия о нем возникли еще в 7 веке до нашей эры. Наблюдая за некоторыми физическими явлениями, греческий ученый и философ Фалес Милетский обратил внимание на то, что янтарь способен притягивать легкие мелкие предметы после его трения о шерсть. На этом уровне знания об электричестве приостановились на многие века.

Первые исследования и открытия

Знания в области электричества стали развиваться далее лишь в 15 веке. И если рассматривать электричество, кто создал его и ввел такое понятие, следует в первую очередь отметить английского физика Уильяма Гильберта (1544-1603). Этот ученый-естествоиспытатель и придворный врач по праву считается основоположником учения об электричестве и магнетизме. Благодаря Уильяму появились термины «электричество» и «электрический». В своем научном труде Уильям Гильберт аргументированно доказывает наличие у Земли магнитного поля.

Книга «О магните, магнитных телах и великом магните Земли» подробно описывает опыты, подтверждающие магнитные и электрические свойства тел. Все тела были разделены на электризующиеся с помощью трения и не электризующиеся. Было установлено, что каждый магнит обладает двумя неразделимыми полюсами. То есть, при распиливании магнита на две равные части, на каждой половинке вновь образуется собственная пара полюсов. Разноименные полюса притягиваются друг к другу, а одноименные, наоборот, отталкиваются в противоположные стороны.

Во время опытов с металлическим шаром, взаимодействующим с магнитной стрелкой, ученым впервые было выдвинуто предположение о том, что Земля есть не что иное, как огромный магнит, а ее магнитные полюсы могут совпадать с географическими полюсами.

Электрические явления были исследованы ученым с помощью версора, созданного собственноручно, который стал первым своеобразным электроскопом. Понятия магнетизма и электричества разделились, поскольку магнитными свойствами обладают в основном металлические предметы, а электрические присущи многим веществам, входящим в особую категорию. В книге Уильяма Гилберта впервые определены понятия электрического притяжения, электрической силы и магнитных полюсов.

История электричества. С кого и чего начиналось развитие электрики. статья на тему

История электричества.

С кого и чего начиналось развитие электрики.

Сильченко Ольга Викторовна,

преподаватель ОГАПОУ «Белгородский

индустриальный колледж», г. Белгород

Важно понимать тот факт, что электричество существовало всегда. Более того, оно есть одно из необходимых условий нашей жизни. Большую часть электрических проявлений мы с Вами не в состоянии увидеть, а те которые происходят в явном виде, это малая их доля.

Молния, статическое напряжение в виде небольшой искры между предметами и человеком, удар электрического ската, притягивание и отталкивание мелких намагниченных частичек друг к другу и подобное, всё это люди замечали, наблюдали, боялись, поклонялись в разные времена. Электрические явления всегда вызывали особый интерес у людей в различных цивилизациях.

Вот к примеру, в древнем Египте были найдены чаши, что являлись простейшими гальваническими элементами и при добавлении в них обычного лимонного сока, способны были выдавать небольшое напряжение. Или же взять известный египетский светильник, который до сих пор изображён на стенах великих пирамид. Он при своей работе мог светиться в течение многих лет. Либо, всё тот же янтарь, электрические свойства которого были открыты ещё в древней Греции. Использование золочения и серебрения в Месопотамии по средствам гальваники, запитаных от простейших батарей. Естественнно, особым дизайном они не выделялись, если сравнивать с нынешними электрическими технологиями, но всё же выполняли свою функциональную задачу.

Так что стремление покорить данный вид энергии и подчинить его себе для определённых нужд, были в истории неоднократно. Началом истории электричества, пожалуй, можно назвать времена примерно 1600 года. Поскольку именно тогда начались первые серьёзные научные попытки разобраться с электромагнетизмом и придать ему определённое научное значение.

В это самое время были выпущены труды Гилберта о магнетизме, магнитных телах и магнетизме земли. Далее изучались феномены электрических зарядов и их природы. В 1650 г. была создана первая электростатическая машина, которая способна была собирать и накапливать заряд, проявляя его в виде искусственной молнии. В 1733 г. Дюфе выявил наличие существования двух видов зарядов. И вплоть до 1800 г. продолжались исследования в данном направлении.

Далее было сделано ещё одно весьма значимое открытие. Алесандро Вольта был создан простейший гальванический элемент, что породило понятие электрического напряжения. Это послужило основой для новых исследований. Но всё это имело только теоретический характер и научный интерес, поскольку для массового использования не было практического применения таким открытиям. Эти простые батарейки и электростатические машины по накапливанию электрических зарядов не способны были выдать больших мощностей, а первые электронагрузки нуждались именно в этом, к тому же они имели плохой КПД.

История электричества в период с 1600 по 1800 год, можно назвать исследовательским и подготовительным этапом. За это время различными учёными неосознанно подготавливалась почва для дальнейших и более значимых открытий и изобретений. Для более серьёзного технологического прорыва в электричестве требовалось появление на свет электрогенератора.

Это произошло в 1831 г., когда Фарадей открыл закон электромагнитной индукции, а спустя пару лет Ленц обобщил опыты Фарадея, создав тем самым основу для создания электрогенераторов и электродвигателей. И, кстати, в этот же период была создана гальваническая батарея с деполяризатором, что в свою очередь значительно улучшило общие характеристики батареи.

За промежуток времени с 1800 по 1900 годов, было придумано множество изобретений, которые можно назвать первыми прототипами нынешних электроустройств. Это и свинцовый аккумулятор, электрозвонок, буквопечатный электромагнитный телеграф, электрогенераторы и электродвигатели различных типов, простейшие электрические лампы, радиопередача Попова, первый электротранспорт и многое другое.

С 1900 года началась масштабное внедрение электричества в социальное общество — это первые электрофицированые производства с электрооборудованием, начало строительства мощных электростанций и усовершенствование непосредственной электропередачи на большие расстояния, внедрение и широкое распространение городского электротранспорта. В итоге это всё способствовало лавинообразному процессу и фундаменту всему тому, что мы сейчас имеем.

Понятие электричества представляет собой некое описание определённых свойств проявления материи в виде существующих энергий (заряды элементарных частиц и их взаимосвязь с другими свойствами материи). Оно было придумано английским учёным Тюдор Уильямом Гилбертом. Как гласит философия, материя вечна (временной есть лишь форма её проявления). Из этого следует, что электричество, было, есть и будет всегда, а значит, впервые ему не бывать. Впервые могут быть только сами познания человеком, этих проявлений, через наблюдения, эксперименты, открытия. А, следовательно, историю этих событий и будем считать общей историей всего электричества.

Одним из первых электрическим зарядом заинтересовался Фалес Милетский. Он заметил, что янтарь, натёртый о шерстяную ткань, обретает способность притягивать к себе маленькие и лёгкие частички. Это однажды даже применялось для чистки от пыли различных поверхностей. Предполагалось, что подобными свойства имеет только лишь янтарь. После того как физика стала считаться экспериментальной наукой, подобное явление было больше изучено.

Первым таким электричеством, в смысле научных достижений, можно считать те исследования, которые начали проводиться приблизительно в начале 17 века. Они принадлежат физику Уильяму Гилберту. Он при помощи своего электроскопа продемонстрировал, что способностью притягивать к себе легкие тела (вроде кусочка бумажки или соломки) может не только янтарь. Этими свойствами обладают и материалы, такие как сапфир, алмаз, горный хрусталь, стекло и прочие. Он один из первых начал исследования магнитных явлений, хотя и поверхностно.

Исследования заряженных частиц и статического электричества, в итоге породили первую электростатическую машину. Она имела примитивную конструкцию, но вполне способна была вырабатывать электричество путём трения о шар сделанный из природной серы. При её работе возникали разряды на небольшом расстоянии. Это было в 1650 г. Учёного звали Отто фон Герике. По большому счёту особой пользы для практического использования машина не имела.

В начале 18 века Стивен Грей заметил, что некоторые вещества (а именно это относится к металлам), имеют способность проводить электричество через себя. Немного позже Роберт Симмер, смотря на электризацию шелковых вещей, сделал вывод, что электричество имеет две противоположности. Сами же свойства стали называть «зарядами». Причём, их определили как положительный и отрицательный.

Суть их появления заключается в перераспределении при трении тел друг о друга. А это, уже и способствует электризации таких тел. То есть, электризация — это нечто иное, как накопление заряда одного определённого типа на самом натираемом теле. К тому же, заряды одного рода будут взаимоотталкиваться, а заряды противоположного значения, будут взаимопритягиваться. К подобным суждениям пришёл и Шарль Дюфе в 1829 году. Его опыты показывали, что один из видов заряда появляется в результате трения стекла о шёлк, другой же, при трении смолы о шерсть. В честь этого учёный дал им названия — «стеклянный» и «смоляный» заряд.

В 1785 году Шарль Кулон экспериментально установил закон взаимодействия зарядов. При помощи специальных точных весов (разработанным им же) — он выяснил, что сила взаимодействия, возникающая между электрически заряженными телами обратно пропорциональна квадрату пути между ними. Таким образом, науку об электричестве начали относить к точным наукам, в которой имеется возможность применять математические методы для расчётов.

В 1821 году Ампер и Эрстед обнаружили непосредственную связь между магнетизмом и электрическими явлениями. В 1830 году Гаусс высказывает основополагающую теорию электростатического поля. А уже в 1831 году Майкл Фарадей открывает электромагнитную индукцию и принципы работы электролиза. Вводит понятия электрического и магнитного поля. В 1880 году Лачинов демонстрировал суть передачи электрической энергии на большие расстояния. В 1888 году Генрих Герц открывает электромагнитные волны.

В итоге была создана электрическая теория вещества. В ней говорилось о том, что физические тела являются комплексами взаимодействующих различных частиц и элементов. Они имеют электрические заряды, и большинство свойств различных физических тел могут быть описаны существующими законами. Это все дало возможность использовать электричество практически во всех сферах жизнедеятельности человечества, облегчая его труд и привнося удобства.

Николу Тесла можно считать одним из немногих гениальных учёных, который главной своей задачей ставил не личную выгоду и деньги, а прежде всего новые открытия и повышение качества жизни всего человечества в целом, что даёт ему по право называться великим человеком.

Сам Никола Тесла был рождён 10 июля 1856 года, в Хорватии, в семье священника. Эволюция мировоззренческих взглядов Николы Тесла основана на пророческих, инженерных и метафизических идеях. При жизни у него не было особого личностного отношения как к себе, так и к другим людям, благодаря чему он мало ошибался. Большая часть его изобретений до настоящего времени утаивается правительством США с печатью «совершенно секретно». Никола Тесла настолько опередил науку своего времени, что некоторые из его открытий нынешние учёные не способны повторить по сей день.

Никола Тесла создал около 800 изобретений, из которых были им запатентованы всего около 300. Были слухи, что в последние годы своей жизни Тесла разрабатывал идею создания искусственного разума. Он также предполагал возможность фиксировать мысли человека на обычной фотографии, считая данное явление вполне реалистичным и осуществимым.

В теории Никола Тесла было основополагающим понятие эфира, как некоторой неощутимой сущности, которая пропитывает весь мир вокруг и пропускающей волны на скорости, во много раз больше самой скорости света. Каждая частичка материи в безграничном пространстве насыщена бесконечной энергией, которую возможно извлечь и использовать для разных нужд.

Тесла мог получать силу электрического тока с величиной в 100 миллионов ампер и напряжение в 10 000 кВ, да к тому же без особых трудностей поддерживать данные значения любое время. Для сравнения, современная наука не смогла достичь подобных результатов, остановившись на пределе лишь в 30 миллионов ампер, да и то, кратковременно.

На лекции по высокой частоте Тесла включал и выключал электродвигатель дистанционно, а в его руках сами собой светились электролампочки, причём у некоторых из них даже не было внутри спирали, просто пустая стеклянная колба. Посетители выставки с ужасом наблюдали, как ученый ежедневно пропускал сквозь себя электрические молнии с напряжением в 2 000 кВ, и при этом нечего страшного не происходило. Просто сверкали разряды молний.

Наиболее большое распространение великого учёного получили такие открытия и изобретения, как переменное электричество, которое очень широко используется в наше время. По причине его удобства преобразования и передачи на большие расстояния. Именно Никола Тесла первым открыл вращающееся магнитное поле и использование нескольких фаз, в результате чего был создан асинхронный двигатель, что пользуется большим успехом в настоящее время.

Трансформатор Тесла заслуживает особого почёта, так как на его принципе работают генераторы высокого напряжения и по сей день. Он используется для получения искусственной молнии. Этот трансформатор способен выдавать напряжения в миллионы вольт при частоте 160 кГц. Одной из идей Тесла была «передача электроэнергии на расстояния без проводов».

Им также была разработана конструкция, напоминающая башню со сферической верхушкой, куда подавалось высокое напряжение, тем самым порождая огромную напряженность и возникающие разряды. Этим устройством Тесла хотел взаимодействовать на ионосферу, что в результате могло бы дать неисчерпаемую энергию и, вдобавок, позволило бы влиять на некоторые процессы (такие как природные, человеческие, энергетические). Кстати, предполагают, что именно подобная установка в своё время вызвала тунгусский взрыв довольно колоссальной мощности.

Однажды Тесла демонстрировал радиоуправляемый кораблик, который плавал в речке и управлялся дистанционно от пульта управления. Кроме этого им были придуманы первые электронные часы, двигатель на солнечной энергии, флуоресцентный свет, электронный микроскоп, люминесцентные лампы, электропечи. Он предпологал возможность лечения больных током высокой частоты, а именно высокочастотный ток с напряжения около 2 миллионов вольт способен убивать вредоносных бактерий, очищать поры и лечить кожу.

Он один из первых наблюдал и дал объяснение катодному, рентгеновскому и ультрафиолетовому излучению. Одним словом, мы многими вещам в наше время обязаны именно этому гению.

Кто придумал электричество

Задавать вопрос «кто придумал электричество?» не совсем корректно. Более правильно спрашивать, кто открыл электричество? Ответить однозначно невозможно. История электричества уходит своими корнями в глубину веков существования человеческой цивилизации.

Фалес Милетский

Хронология основных открытий и изобретений

В современном мире каждый ребёнок в сознательном возрасте сталкивается в доме с электричеством. Первые упоминания о наблюдениях в природе этого физического явления относятся к IV веку д. н. э. Великий философ Аристотель изучал поведение угрей, которые поражали свои жертвы электрическими разрядами.

Легендарный учёный Фалес Милетский, живший в Древней Греции (V век д.н.э.), упоминал в своих трудах о таком явлении, как электричество. Он наблюдал за тем, как янтарь, натёртый комком шерсти, притягивал к себе различную мелочь. Историки признают время описания опытов периодом открытия электричества.

Важно! Термин «электричество» происходит от слова «электрон», что означает янтарь.

Далее в истории человечества происходит длительный временной промежуток, в котором не осталось сколь-нибудь существенных упоминаний об электричестве.

Лишь, начиная с 17 века, стартует череда открытий и изобретений, касающаяся электроэнергии. Об истории электричества сообщает Википедия достаточно подробно. Вот краткий перечень основных вех развития науки об электрической энергии:

  1. Англичанин Уильям Гилберт в начале XVII века, изучая магнитоэлектрические явления, ввёл впервые такое понятие, как электричество (янтарность).
  2. Через два года в 1663 году бургомистр Магдебурга Отто фон Генрике продемонстрировал электростатический прибор, состоящий из серного шара, насаженного на металлическую ось. На поверхности сферы в результате трения о ладони накапливался статический заряд тока, который своим магнитным полем притягивал или отталкивал мелкие предметы.

Электростатическая машина Отто фон Генрике

  1. Почти через 60 лет (1729 г.) английский физик Стивен Грей опытным путём определил способность проводить ток различных материалов.
  2. Четыре года спустя (1733 г.) французский физик Шарль Дюфе выдвинул сомнительную версию о существовании двух типов электричества, имеющих стеклянное и смоляное происхождение. Он пояснял это тем, что он получал электрический заряд на поверхности стеклянного стержня и комка смолы путём их трения о шёлк и шерсть, соответственно.
  3. В 1745 году была изобретена Лейденская банка – прообраз современного конденсатора. Автором изобретения был голландский исследователь Питер ван Мушенброк.

Лейденская банка

  1. В это же время выдающиеся русские учёные Рихман и Ломоносов в Санкт-Петербурге добиваются получения искусственного грозового разряда в лабораторных условиях. Во время проведения очередного эксперимента, получив электрический удар, погибает Рихман.
  2. 1785 г. ознаменовался регистрацией в Лондоне закона Кулона, носящего имя его автора. Учёный обосновал величину силы взаимодействия точечных зарядов в зависимости от длины промежутка между ними.
  3. Спустя несколько лет, в 1791 году, Гальвани выпускает в свет трактат, в котором доказывает протекание электрических процессов в мышцах животных.
  4. В этой же стране Вольта в 1800 г. демонстрирует гальванический элемент – источник постоянного тока. Прибор представлял вертикальное сооружение из серебряных и цинковых дисков, переложенных бумагой, вымоченной в соляном растворе.

Вольтов столб

  1. Через двадцать лет датский физик Эрстед обнаружил существование электромагнитного эффекта. Размыкая контакты электрической цепи, он заметил колебания стрелки рядом положенного компаса.
  2. Спустя год, великий французский учёный Ампер в 1821 г. обнаружил магнитное поле вокруг проводника переменного тока.
  3. 1831 г. – Фарадей создаёт первый в мире генератор тока. Двигая намагниченный сердечник внутри катушки из металлической проволоки, он зафиксировал проявление электрического заряда в её витках. Учёный был одним из тех физиков, кто первый создал электричество в лабораторных условиях. Им же была обоснована теория об электромагнитной индукции.

Обратите внимание! По мере накопления практики в результате многочисленных опытов стала возникать потребность теоретического обоснования явлений и появления науки, связанной с электричеством.

Каждая ступень строительства электрической теории возводилась на основе личных открытий выдающихся учёных физиков. Их фамилии составляют список имён, кому принадлежит изобретение электричества. Теоретическая научная база электричества развивалась постепенно, по мере накопления экспериментального опыта.

Выше уже упоминалось то, что понятие «электричество» впервые было введено в употребление Уильямом Гилбертом в 1600 г. С этого момента отмечают дату, когда появилось электричество.

Демонстрируемый прибор в 1663 г. бургомистром Магдебурга Отто фон Генрике считают первой электростатической машиной. Она представляла собой смоляной шар, насаженный на металлический стержень.

В 1745 году случилось знаменательное событие – голландский исследователь Питер ван Мушенброк создал электростатический конденсатор. Прибор был назван в честь города, где было сделано изобретение, – Лейденской банкой.

Бенджамин Франклин ввёл понятие о полярности зарядов. С тех пор аксиомой является то, что любой электрический потенциал имеет отрицательный и положительный полюсы.

В 1747 году американский научный исследователь Бенджамин Франклин создаёт собственную теорию об электричестве. Он представил природу электричества как нематериальную жидкость в виде неких флюидов.

Теоретическая база, накопленная за несколько последних столетий, позволила в ХХ веке полученные знания переформатировать в точную науку. Основополагающие открытия и изобретения появились, благодаря тем учёным, кто открыл природу электрического тока. Точно установить, в каком году изобрели искусственное электричество, невозможно. Это произошло в основном в течение 18 и 19 веков.

Назвать того, кто первый изобрёл ток, довольно затруднительно. Скорее всего, это можно приписать целому ряду великих учёных, упомянутых выше. К этому приложили руку выдающиеся физики Америки, Англии, Франции, Италии, России и многих других стран Европы.

Несомненную бессмертную славу заслужили такие изобретатели и теоретики электротехники, как Эдисон и Тесла. Последний много приложил усилий по теоретическому обоснованию природы магнетизма, успешно реализовывал его на практике. Тесла является создателем беспроводного электричества.

Одной из фундаментальных скрижалей науки об электричестве является закон взаимодействия зарядов, известный как закон Кулона. Он гласит о том, что сила взаимодействия двух точечных зарядов находится в прямой пропорциональной зависимости от произведения количеств зарядов и обратно пропорциональна расстоянию в квадрате между этими точками.

Закон Кулона

Документальным подтверждением изобретения электрической батареи считается предложенное устройство итальянским учёным Алессандро Вольта. Прибор назвали вольтовым столбом. Он представлял собой своеобразную этажерку, сложенную из медных и цинковых пластинок, переложенных кусками войлока, смоченного раствором серной кислоты.

Вверху и внизу столба создавался электрический потенциал, разряд которого можно было почувствовать, приложив к столбу ладони рук. В результате взаимодействия атомов металлов, возбуждённых электролитом, внутри батареи накапливалась электроэнергия.

Изобретатель гальванического электричества, Алессандро Вольта, положил начало появлению того, что сегодня называют батарейками.

Появление понятие тока

Выражение «ток» возникло одновременно с появлением электричества в лаборатории физика Уильяма Гилберта в 1600 году. Ток характеризует направленность электрической энергии. Он может быть как переменным, так и постоянным.

Бесценный вклад в развитие теории электричества внёс в XIX веке немецкий физик Кирхгофа. Он был автором терминов таких, как ветвь, узел, контур. Законы Кирхгофа стали основой построения всех электрических цепей радиоэлектронных и радиотехнических приборов и устройств.

Первый закон гласит: «Сумма электрических зарядов, идущих в узел в течение определённого времени, равна сумме зарядов, уходящих из него за это же время».

Второе положение Кирхгофа можно выразить так: «При прохождении токов через все ветви контура падает потенциал. При их возвращении в исходный узел потенциал полностью восстанавливается и достигает своей первоначальной величины. То есть утечка энергии в пределах замкнутого электрического контура равняется нулю».

Явление возникновения электрического тока в замкнутом контуре проводника при прохождении через него переменного магнитного поля описал в 1831 году Фарадей. Теория электромагнитной индукции позволила открывать последующие законы электротехники и изобретать различные модели генераторов как постоянного, так и переменного тока. Эти устройства демонстрируют, как появляется и проистекает электричество в результате действия электромагнитной индукции.

Использование электрического освещения в России

Ещё со школьной скамьи люди помнят историю появления электрических лампочек в России. Первый опыт в создании этих приборов был проведён русским учёным Яблочковым. Их устройство было основано на возникновении искры между двумя каолиновыми электродами.

В 1874 г. Яблочков впервые представил прибор освещения с использованием электрической дуги. Этот год можно считать отправной точкой, когда впервые появилось световое электричество в России. Впоследствии свечи Яблочкова использовались как дуговые прожектора на паровозах.

До появления ламп накаливания Эдисона угольные свечи Яблочкова ещё долго использовались как единственный источник электрического освещения в России.

Производство и практическое использование

Со времён появления первого электричества до массового производства электричества и его практического применения должно было произойти много открытий, и внедрено изобретений в сферу генерирования и передачи электрической энергии.

Генерирование и передача электроэнергии

Со временем стали придумывать различные способы генерирования электричества. С появлением мобильных, а впоследствии гигантских электростанций, возникла проблема передачи электричества на большие расстояния.

Позволить решить этот вопрос помогла научно-техническая революция. В результате были построены огромные сети электропередач, охватывающие страны и целые континенты.

Применение

Практически невозможно назвать сферу деятельности человечества, где бы ни было задействовано электричество. Оно является основным источником энергии во многих жизнеобеспечивающих сферах деятельности человека.

Современный виток исследований

Грандиозный рывок в развитии электротехники совершил легендарный учёный, физик и изобретатель Никола Тесла на рубеже XIX, XX веков. Многие изобретения Теслы ещё ждут нового витка исследований в области электротехники для того, чтобы они были внедрены в жизнь.

Сейчас ведутся исследовательские работы по получению новых сверхпроводимых материалов, созданию совершенных компонентов электрических цепей с высоким КПД.

Дополнительная информация. Открытие графена и получение из него новых токопроводящих материалов предрекают грандиозные перемены в сфере использования электричества.

Наука не стоит на месте. С каждым годом человечество становится свидетелем появления более совершенных источников электроэнергии, вместе с этим и создания приборов, машин и различных агрегатов, потребляющих экологически чистую энергию в виде электрического тока.

Электричество… Оно везде. Оно в сотовом телефоне. Оно в ноутбуке. Оно на потолке. Оно на улице. Оно в машине. Почти везде…

Оказывается нет.

Холодильник без электричества (+Фото)

Сегодня я приведу слова человека, который живёт почти без электричества. Зовут его Брайан, и ему 26 лет.

Таких как он не так уж и мало. Я не призываю брать с него пример — я предлагаю задуматься о роли и месте электричества в нашей жизни. Первый результат мы уже сформулировали: современное человечество «электрически зависимо», а любая зависимость ограничивает свободу. Давайте послушаем Брайана, живущего со своей девушкой в саманном (сделанном из глина-солома-грязь) доме ( дом Брайана на иллюстрации) где-то в Сытых Штатах Америки.

Хочу сказать, что я в целом поддерживаю новаторский подход Брайана, но кое-где вставлю свои ремарки.

«Когда я строил свой дом из глины два года назад, я решил жить без электричества. Ни солнечных панелей, ни ветряков. Люди счастливо жили без электричества тысячелетиями. Без электричества я смогу жить более естественной жизнью.

Вот несколько преимуществ жизни без электричества:

1. Не надо оплачивать счета за электричество. Жить без электричества дёшево. Не надо платить за электричество. Солнечные панели ещё слишком дороги….

2. Вам не надо обращаться к электрику. У меня никогда не бывает проблем с проводами, коротких замыканий и выключений света, потому что никаких проводов у меня нет. Я не трачу на уход за электросистемой своё драгоценное время и свои силы.

3. У меня дома уютно. Бывали ли вы когда-либо в помещениях, освещаемых только свечами? Это неповторимо, это красиво, это вселяет спокойствие и тепло. (Допускаю, что искусственное освещение на самом деле большинству из нас не нравится — просто мы это забыли, как протестовали против него ещё в младенчестве). Свечи создают обстановку чистоты, тепла и взаимного доверия. Только свечи могут создать по-настоящему интимное освещение.

4. Жить без электричества экологично…. «Чистая» электроэнергия — это миф… (Доля условно экологичного электричества, генерируемого из возобновляемых источников, ещё слишком мала. Большая часть электроэнергии производится с нанесением значительного вреда природе. И вред этот неизмеримо выше, чем те копейки, которые мы с вами платим местным энергокомпаниям.)

5. Меньше воздействие потенциально опасных магнитных полей. (очевидно, что поле человека, имеющее электромагнитную природу и поля от электроприборов взаимодействуют. Уверены ли вы, что это безвредно для вас? Чем меньше чужеродных, искусственных полей в пространстве, тем лучше.)

6. Нет шума работающих приборов. (да, мы с вами зачастую уже и не замечаем гула компьютеров и даже гудения пылесосов, а ведь всё это для нас является звуковым мусором….)

7. Здоровые биоритмы. Искусственная жизнь сбивает все ритмы. (Обычный горожанин, ещё и работающий в помещении без окон не то, что день и ночь, зиму с летом не замечает. К сожалению, это не шутка.) Когда человек живёт в соответствии с естественными ритмами природы, его самочувствие и здоровье улучшаются, как следствие обновления и укрепления нервной системы.

8. Свечи вкусно пахнут. Я не использую парафиновые свечи, так как, есть мнение, что при горении они выделяют канцерогены. Свечи из пчелиного воска действительно вкусно пахнут (будучи веганом порекомендую Брайану найти замену, так как под вопросом этическая сторона добычи этого ароматного воска. А вообще идея занятная: я сам, работая за компьютером зажигаю рядом безароматную свечу — это настраивает на творческий лад. Сейчас у меня тоже эта свеча рядом горит.)

9. Меньше отвлекающих раздражителей. Телевизор (на первом месте), компьютеры, сотовые телефоны, видеоигры и подобные штучки оттягивают на себя наше драгоценное живое внимание. (Чем меньше потерь, тем больше настоящего в жизни: настоящих мыслей, настоящих идей, настоящих чувств).

Вы возможно подумаете, что жить без электричества непрактично и неудобно. Пожалуй, вы правы. Я тоже сижу сейчас в освещённой искусственным светом комнате за компьютером и думаю надо обо всём этом (Брайан пользуется компьютером в общем здании сообщества «Танцующий кролик»)»

На этом ответы Брайана заканчиваются, и я ещё немного от себя добавлю. Смотрели ли вы фильм «Тесла — властелин мира» о жизни Николы Тесла? Насколько я помню, Тесла в самом начале двадцатого века, однажды за пару часов смастерил маленькую коробочку и встроил её в обычную машину. Машина поехала без участия топлива — только на извлекаемом из атмосферы электричестве. Этот электромобиль является лишь одним из множества примеров, демонстрирующих доступность природного электричества для человека.

При ныне доминирующем в современном обществе подходе преступного дефицита (подробнее в фильме «Дух времени 2») самых необходимых вещей, при хищническом потреблении просто нельзя открывать человеку такие знания.

Во-первых, банкиры с торговцами, освоив новые технологии (которые своими опытами демонстрировал тот же Тесла) смогут применять их во зло: для дальнейшего закабаления людей или буквально в качестве оружия массового поражения. Никола Тесла попробовал это, и от этого содрогнулся весь мир: так называемый Тунгусский метеорит на самом деле был мощным, сгенерированным установкой Теслы электроударом (лично я считаю эту гипотезу вполне вероятной)….

Во-вторых, банкиры с торговцами в лице своих транснациональных корпораций делают всё возможное, чтобы человек не отказывался от своих зависимостей: зависимостей от вредной еды; от ненужной одежды, навязываемой специальным маркетинговым инструментом — модой; от стремления жить в бетонных скворечниках(по сути, комфортных бараках); от установки на работу с 9 до 6: от привычки перекладывать отвественность за свою жизнь на других… продолжите список сами.

Получив бесплатный карманный электрогенератор человек подумает да и решит не идти на рабскую работу. Как в фильме «Матрица», одна отлепившаяся присоска повлечёт за собой отключение других. Человек освободится, и тогда банкирам придётся «менять профиль деятельности»….

Человек обязательно освободится. Прочитав эту статью, лично вы тоже стали хоть на малую долю, но свободнее. Будем жить…

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *