Проект про электричество

Проект Электричество в повседневной жизни

Министерство образования Республики Башкортостан

Муниципальное бюджетное общеобразовательное учреждение «Гимназия№3» городского округа город Октябрьский

Проект

Электричество в повседневной жизни

Выполнил

ученик 9 а класса МБОУ «Гимназия №3»

Саяхов Роберт

учитель физики МБОУ «Гимназия №3»

Тарасова М.В

г. Октябрьский РБ

2019 г

Введение

Электричество в нашей жизни

Электричество и человек

Осторожно — электричество!

Электричество в природе

Практическая часть

Выводы

Литература

Введение

Сейчас практически невозможно представить себе современную жизнь без электроприборов и электричества. Уже несколько поколений удивляются и не понимают – как когда-то люди жили без такого блага цивилизации – электричества?

Я провел исследования по теме «Электричество в повседневной жизни» и хотел узнать, что такое электричество, как его можно обнаружить в нашей повседневной жизни. В настоящее время очень большую роль играют электрические приборы, но большинство людей даже не представляют насколько они опасны.

Цель: узнать где мы можем встретить электричество, и как мы можем уберечь себя от удара током.

Задачи:

изучить литературу об электричестве;

узнать, откуда берется электричество;

применить знания, умения, правила техники безопасности на практике.

Актуальность темы.

Тесное повседневное общение с большим количеством разнообразных электроприборов, машин и аппаратов, влечет за собой увеличение риска поражения человека электрическим током, в том числе и в быту при возникновении различных аварийных ситуаций. Потребление электроэнергии в быту значительно увеличилось и растёт всё больше.

Дома, в школе, в больнице, на заводе, под землей, под водой – всюду оно рядом с человеком. Движет, согревает, освещает электричество. Электричество – очень полезно, но изучение «электричества» – это очень большая и сложная работа, которая требует больших знаний.

Не знание правил обращения с электричеством может привести к электрическим травмам и возникновению пожаров.

Методы:

изучение литературных источников; практическая работа.

Теоретическая значимость:

изучение и систематизация материала по данной теме.

Практическая значимость:

без электричества представить нашу современную жизнь практически невозможно;

результаты исследования позволят больше узнать об окружающем мире, помогут в повседневной жизни.

Я предположил, что знания об электрических явлениях поможет нам:

Защититься от удара током

Судить о исправности или не исправности прибора

Правильно решать задачи по физике на экзаменах.

Далее я спланировал свою работу так чтобы найти ответы на следующие вопросы:

Где можно встретить электричество?

Какая сила тока опасна для человека?

Как можно получить источники электрической энергии?

Для того что бы ответить на эти вопросы, я:

изучил теорию вопроса;

побеседовал с представителями разных профессий (строителями, нефтяниками, школьными учителями биологии, технологии, химии, физики), проанализировал результаты, полученные в ходе опроса.

провел опыты по получению электрического тока из растений.

Электричество в нашей жизни

Ни один дом не сможет обойтись без электроэнергии. На работе, в быту и даже в хозяйстве вы и дня без нее не сможете.

Электроэнергия – это физический термин, который часто применяется в технике и в быту для определения количества электрической энергии, передаваемую генератором, в электрическую сеть. Под определение электричества применяют такие параметры как напряжение, частота и количество фаз, электрический ток. Электроэнергию вырабатывают на электростанциях, таких как ТЭС (теплоэлектростанция), ГЭС (гидроэлектростанция) и АЭС (атомные станции).

Сейчас можно с уверенностью сказать, что самым главным достижением человечества является открытие электрического тока и его использование.

Электрическая энергия имеет огромное значение, как в жизни каждого отдельно взятого человека, так и в развитии современного общества в целом.

В повседневной жизни электричество сопровождает нас весь день. Ежедневно каждый второй человек включает телевизор, компьютер, а холодильник нуждается в электричестве постоянно. Оно существенно сокращает количество проделанного нами труда вручную. Электроэнергия применяется для освещения помещений и улиц, создания микроклимата (вентиляторы, ионизаторы, кондиционеры, приборы для отопления), хранения продуктов питания (морозилки, холодильники), приготовления пищи (плиты, СВЧ печи, соковыжималки, кофеварки, кухонные комбайны т. д.), уборки квартиры (пылесосы), стирки и сушки белья (стиральные машины, электросушилки и утюги).

На заводах или фабриках в электроэнергии нуждаются постоянно. Оно приводит в действие станки, электромашины, компьютеры и т. д. Электричество снабжает дома, при помощи трансформаторных подстанций.

Работа современных средств связи, без которых мы не представляем свою жизнь — телефона, радио, телевидения, интернета — также основана на использовании электрической энергии.

Электроэнергия поселилась во всех сферах деятельности человека. Без электричества не могут обойтись ни промышленность, ни сельское хозяйство, ни даже наука.

Но, важно понимать, что электрическая энергия, которую мы используем, не существует в природе в готовом для потребления виде. Её нельзя добыть, как полезное ископаемое – нефть или уголь.

Молния — электрический искровой разряд в атмосфере, обычно может происходить во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Сила тока в разряде молнии на Земле достигает 10—500 тысяч ампер, напряжение — от десятков миллионов до миллиарда вольт.

Электричество и человек

Тело человека способно вырабатывать электроэнергию, в частности на такой подвиг способна сердечная мышца. Благодаря таким сердечным способностям, с помощью электрокардиограммы, можно измерить ритм биения сердца.

А вот в период, когда человек только начинал заниматься исследованиями электрических явлений, но при этом еще даже не знал о существовании специальных приборов, он ради науки приносил в жертву свое здоровье, а иногда и жизнь. Так однажды ученый-физик В. Петров, который исследовал явление электрической дуги, пошел на такую жертву и срезал слой кожи на пальцах, чтобы была возможность лучше чувствовать слабые токи.

Еще древние римляне додумались лечить болезни с помощью электричества. Они нашли выход, как можно избавиться от головной боли. Для этих целей, на голову больного накладывали электрического угря. Конечно, сказать об эффективности такого лечения очень трудно, так как больной после такой процедуры уверял, что все прошло, или же боялся признаться, что у него болит голова.

Также интересным явлением из области электричества, является то, что при попадании в человека разряда молнии, у него на теле появляется довольно таки особенный рисунок, который еще называют фигурой Лихтенберга.

Осторожно — электричество!

Однако многие из нас даже не задумываются о том, что электрический ток безопасен только до тех пор, пока находиться под «замком» изоляции проводов и, вырвавшись оттуда, может стать безжалостным зверем готовым уничтожить все на своем пути. Электрический ток опасен тем, что человек не может определить своими органами чувств его наличие и зачастую поражение током для человека становиться полной неожиданностью.

Электрический ток бывает двух видов постоянным и переменным. Встретить постоянный ток можно, например, в батарейках или аккумуляторе автомобиля. Четкое разделение на «плюс» и «минус» определяют постоянный ток. С переменным током все несколько сложнее. Дело в том, что полярность при переменном токе меняется с определенной частотой, то есть «плюс» и «минус» меняются местами. Например, стандартом для нашей электрической сети является частота в 50 герц, то есть «плюс» и «минус» поменяются местами 50 раз в секунду. Токи по-разному влияют на человеческий организм.

Поражения электрическим током можно получить при использовании электробытовых приборов и от ударов молнии, поскольку человеческий организм хороший проводник тока. Нередко травмы получают, наступив на лежащий на земле провод или отодвинув руками отвисшие электрические провода.

Напряжение свыше 36 В считается опасным для человека. Если через тело человека пройдет ток всего лишь в 0,05 А, он может вызвать непроизвольное сокращение мышц, которое не позволит человеку самостоятельно оторваться от источника поражения. Ток в 0,1 А смертелен.

Ещё опаснее переменный ток, поскольку оказывает более сильное воздействие на человека. Этот наш друг и помощник в ряде случаев превращается в беспощадного врага, вызывая нарушение дыхания и работу сердца, вплоть до его полной остановки. Он оставляет страшные метки на теле в виде сильнейших ожогов. Первое, что нужно знать об электричестве это то, что сила повреждения человеческого организма зависит не от напряжения, а именно от тока, примером тому могут служить, популярные сегодня, мио стимуляторы для наращивания мышц и сжигания жировых клеток. Напряжение в данных приборах может достигать 1000 вольт, однако сила тока настолько мала, что человек получает только стимуляцию мышц.

Чтобы не допустить несчастного случая:

Необходимо знать, что смертельно опасно не только касаться, но и подходить ближе чем на 5-8 м к лежащему на земле оборванному проводу воздушной линии.

Электричество в природе

Каждый из нас часто наблюдал за птицами, беззаботно сидящими на электрических проводах. Почему птицы сидят на высоковольтных проводах, а человек, коснувшись проводов, погибает? Все очень просто — они сидят на проводе, но ток через птицу не течет, но, если птичка взмахнет крылом, одновременно касаясь двух фаз — умрет. Обычно так погибают большие птицы типа аистов, орлов, соколов.

Так и человек может коснуться фазы и ему ничего не будет, если через него ток не потечет, для этого нужно одевать прорезиненные ботинки и нельзя при этом коснуться стены или металла.

Многие животные имеют такую способность, как вырабатывать электрический ток. Обороняясь от врагов, электрический угорь способен выработать электрический ток, который имеет напряжение до 500 В.

Электрический скат – способен создать электрический заряд. Напряжение составляет от 8 до 220 вольт. Разряд электрического ската для человека не так опасен, как для мелких рыб, но все же оказывает пагубное слияние на здоровье и жизнедеятельность человека. Мелкие разряды отразятся сильной болью, более сильные могут парализовать конечности тела, самые мощные разряды могут привести к летальному исходу. Для сохранения жизни и здоровья человеку рекомендуется избегать купания в тех местах, где обитает электрический скат, а также ни в коем случае не взаимодействовать с рыбой на суше и в водной среде. Тем не менее, известно, что электрического ската в Древней Греции активно использовали как средство от боли, как болеутоляющее при операциях и родах. Электрического ската прикладывали к месту боли, с помощью электрического напряжения болезненные ощущения проходили. Такое использование морских электрических скатов обусловило появление современных электрических медицинских приборов.

«Электрический язык» пчелы. Известно, что некоторые насекомые — своего рода «живые барометры». Они могут заранее определять перемену погоды. Это связано с их способностью воспринимать изменения электрического состояния атмосферы. В период хорошей погоды напряженность электрического поля у поверхности Земли составляет около 1,3 В/см, а перед грозой или пылевой бурей может возрастать до 10 В/см. Возрастает и величина наводимого тока, который раздражает насекомое и побуждает его искать укромное место от непогоды. Эта чувствительность к переменным электрическим полям у различных видов насекомых неодинакова. Например, максимальная чувствительность к электрическому полю медоносных пчел находится на частоте 500 герц и составляет 4—5 В/см. А осы начинают возбуждаться, когда напряженность поля достигает всего 0,3—0,5 В/см.

Растения и электричество. Изучению «растительного электричества» в XIX в. было уделено немало внимания. Первые попытки обнаружения токов действия у растений предпринимались именно на тканях, способных к сокращению. Токи действия в растительных тканях были обнаружены в опытах с черешками мимозы, способными совершать механические движения под влиянием внешних раздражителей. Однако наиболее интересные результаты были получены в конце прошлого века Бердон-Сандерсоном, исследовавшим токи действия в закрывающихся листьев насекомоядного растения – так называемой венериной мухоловки. Оказалось, что в момент сворачивания края листа в его тканях возникают точно такие же токи действия, как в мышце при сокращении.

Практическая часть

Сочные фрукты, молодой картофель и другие пищевые продукты могут служить питанием не только для людей, но и для электроприборов. Чтобы добыть из них электричество, понадобятся оцинкованный гвоздь или шуруп и отрезок медной проволоки. Чтобы зафиксировать присутствие электричества, нужен бытовой мультиметр, а более наглядно продемонстрировать успех поможет светодиодный светильник, рассчитанные на питание от батареек.

Как получить электричество из картофеля.

Почти в любом овоще или фрукте есть электричество. Для создания генератора тока понадобится: картофель 1 шт; зубочистки 2 шт; соль; чайная ложка; провода 2 шт; зубная паста.

Провода необходимо зачистить. Картофель разрезать ножом на 2 половинки. Провод протянуть через одну половинку картофеля. Используя чайную ложку сделать во второй половинке картофеля ямку — размер ее равен размеру ложки.

Смешать с солью зубную пасту и заполнить ею ямку, сделанную в разрезанном картофеле. Соединить две половинки картофеля зубочистками.

Для добычи напряжения необходимо на один из проводов намотать кусочек ваты. Подождать две минуты (пока батарея зарядиться).

Затем друг к другу поднести провода до появления искры.

Как получить ток из лимона.

Разомнем лимон в руках, чтобы разрушить внутренние перегородки, но не повредить кожуру. Воткните гвоздь (шуруп) и медную проволоку так, чтобы электроды располагались как можно ближе друг к другу, но не соприкасались. Чем ближе будут находиться электроды, тем меньше вероятность, что они окажутся разделены перегородкой внутри фрукта. В свою очередь, чем лучше ионный обмен между электродами внутри батарейки, тем больше ее мощность.

Такие опыты я провел с другими фруктами и овощами. Результаты измерений напряжения я занес в таблицу.

Измерения показали, что самое высокое напряжение дает груша, самое низкое – киви. Удивительно, что лимонная батарейка слабее других источников (кроме киви), хотя в сети Internet в основном рассматривается именно лимон как сырье для источников питания.

Работа, которой я занимался, показалась мне очень интересной. Я смог ответить на все интересовавшие меня вопросы. Так, проведенные эксперименты подтверждают гипотезу о возможности создания источников питания из фруктов и овощей.

Такие батарейки могут использоваться для работы приборов с низким потреблением энергии. Из использованных фруктов и овощей лучшими источниками электрического тока являются лимон, картофель, лук репчатый.

Я убедился в том, что физика наука экспериментальная. Я учился делать наблюдения, выдвигать гипотезы, проводить эксперимент, делать выводы. Я научился определять напряжение внутри «вкусной» батарейки и силу тока, создаваемую ею. Мне очень понравилось ставить эксперименты самому. Оценивать получившийся результат. Я заметил, что не всегда эксперимент удается, хотя теоретически так должно быть. Например, мне не удалось зажечь лампочку на 3,5 В, поэтому буду пробовать еще, пока не добьюсь результата​​​​​​​

Выводы

Для того что бы хорошо выполнить проект по физике мне понадобились знания

русского языка и литературы — грамотно оформить проект, интересно изложить содержания проекта;

физики, биологии, химии – знакомство с источниками электрического тока.

Выбор идеи и обоснование проекта. Я выбрал именно эту тему потому что в будущем она может мне пригодиться при сдаче экзаменов.

Новизна. Я узнал, что такое электричество и где мы можем ее встретить.

Небольшие поселки, микрорайоны, мини-заводы, больницы и школы – все эти социальные здания часто становятся заложниками разных причин и обстоятельств, по которым могут ограничивать подачу электроснабжения. Люди уже настолько привыкли к цивилизованным, комфортным условиям, что вряд ли бы согласились отказаться от них. Научные изобретения постоянно удивляют нас и делают нашу жизнь все более беззаботной.

Литература

http://edufuture.biz/index.php?title=Электрический_ток._Сила_тока

Повышение оригинальности

Энергоснабжение
ЭНЕРГОСНАБЖЕНИЕ — обеспечение предприятия всеми видами энергии и топлива. Электрическая сеть — совокупность электроустановок предназначенных для передачи и распределения электроэнергии от электростанции к потребителю. ГОСТ 24291-90 даёт следующее определение электрической сети:
Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии.
Классификация электрических сетей
Электрические сети принято классифицировать по назначению (области применения), масштабным признакам, и по роду тока.

    Назначение, область применения
    Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей.
    Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.)
    Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей.
    Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).

Масштабные признаки, размеры сети

    Магистральные сети: сети, связывающие отдельные регионы, страны и их крупнейшие источники и центры потребления. Характерны сверхвысоким и высоким уровнем напряжения и большими потоками мощности (гигаватты).
    Региональные сети: сети масштаба региона (в России — уровня субъектов Федерации). Имеют питание от магистральных сетей и собственных региональных источников питания, обслуживают крупных потребителей (город, район, предприятие, месторождение, транспортный терминал). Характерны высоким и средним уровнем напряжения и большими потоками мощности (сотни мегаватт, гигаватты).
    Районные сети, распределительные сети. Имеют питание от региональных сетей. Обычно не имеют собственных источников питания, обслуживают средних и мелких потребителей (внутриквартальные и поселковые сети, предприятия, небольшие месторождения, транспортные узлы). Характерны средним и низким уровнем напряжения и небольшими потоками мощности (мегаватты).
    Внутренние сети: распределяют электроэнергию на небольшом пространстве — в рамках района города, села, квартала, завода. Зачастую имеют всего 1 или 2 точки питания от внешней сети. При этом иногда имеют собственный резервный источник питания. Характерны низким уровнем напряжения и небольшими потоками мощности (сотни киловатт, мегаватты).
    Электропроводка: сети самого нижнего уровня — отдельного здания, цеха, помещения. Зачастую рассматриваются совместно с внутренними сетями. Характерны низким и бытовым уровнем напряжения и маленькими потоками мощности (десятки и сотни киловатт).

Род тока

    Переменный трёхфазный ток: большинство сетей высших, средних и низких классов напряжений, магистральные, региональные и распределительные сети. Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. Каждый провод и переменный ток в нём называются «фазой». Каждая «фаза» имеет определённое напряжение относительно земли, которая выступает в роли четвёртого проводника.
    Переменный однофазный ток: большинство сетей бытовой электропроводки, оконечных сетей потребителей. Переменный ток передаётся к потребителю от распределительного щита или подстанции по двум проводам (т. н. «фаза» и «ноль»). Потенциал «нуля» совпадает с потенциалом земли, однако конструктивно «ноль» отличается от провода заземления.
    Постоянный ток: большинство контактных сетей, некоторые сети автономного электроснабжения, а также ряд специальных сетей сверхвысокого и ультравысокого напряжения, имеющих пока ограниченное распространение.

Принципы работы
Электрические сети осуществляют передачу, распределение и преобразование электроэнергии в соответствии с возможностями источников и требованиями потребителей.
Переменный ток
Дополнительные сведения: Переменный ток
Большинство крупных источников электроэнергии — электростанции — построено с использованием генераторов переменного тока. Кроме того, амплитудное напряжение переменного тока может быть легко изменено при помощи трансформаторов, что позволяет повышать и понижать напряжение в широких пределах. Основные потребители электроэнергии также ориентированы на непосредственное использование переменного тока. Мировым стандартом генерации, передачи и преобразования электроэнергии является использование переменного трёхфазного тока. В России и европейских странах промышленная частота тока равна 50 герц, в США, Японии и ряде других стран — 60 герц.
Переменный однофазный ток используется многими бытовыми потребителями и получается из переменного трёхфазного тока путём объединения потребителей в группы по фазам. При этом каждой группе потребителей выделяется одна из трёх фаз, а второй провод («ноль»), используемый при передаче однофазного тока, является общим для всех групп и в своей начальной точке заземляется.
Классы напряжения
При передаче большой электрической мощности при низком напряжении возникают большие омические потери из-за больших значений протекающего тока. Формула ?S = I?R описывает потерю мощности в зависимости от сопротивления линии и протекающего тока. Для снижения потерь уменьшают протекающий ток: при снижении тока в 2 раза омические потери снижаются в 4 раза. Согласно формуле S = IU для передачи такой же мощности при пониженном токе необходимо во столько же раз повысить напряжение. Таким образом, большие мощности целесообразно передавать при высоком напряжении. Однако строительство высоковольтных сетей сопряжено с рядом технических трудностей; кроме того, непосредственно потреблять электроэнергию с высоким напряжением крайне проблематично для конечных потребителей.
В связи с этим сети разбивают на участки с разным классом напряжения (уровнем напряжения). Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения: от 750 кВ и выше (1150 кВ, 1500 кВ) — Ультравысокий, 750 кВ, 500 кВ, 330 кВ — сверхвысокий, 220 кВ, 110 кВ — ВН, высокое напряжение, 35 кВ — СН-1, среднее первое напряжение, 20 кВ, 10 кВ, 6 кВ, 1 кВ — СН-2, среднее второе напряжение, 0,4 кВ, 220 В, 110 В и ниже — НН, низкое напряжение.
Преобразование напряжения
Как правило, генераторы источника и потребители работают с низким номинальным напряжением. Потери энергии в линиях обратно пропорциональны квадрату напряжения, поэтому для снижения потерь электроэнергию выгодно передавать на высоких напряжениях. Для этого на выходе от генератора его повышают, а на входе потребителя его понижают при помощи трансформаторов.
Структура сети
Электрическая сеть может иметь очень сложную структуру, обусловленную территориальным расположением потребителей, источников, требованиями надёжности и другими соображениями. В сети выделяют линии электропередачи, которые соединяют подстанции. Линии могут быть одинарными и двойными (двухцепными), иметь ответвления (отпайки). К подстанциям, как правило, подходит несколько линий. Внутри подстанции происходит преобразование напряжения и распределение потоков электроэнергии между подходящими линиями. Для соединения линий и оборудования внутри подстанций используются электрические коммутаторы (англ. Commutator (electric)) различных типов.
Для наглядного представления структуры сети используется специальное начертание схемы сети, однолинейная схема, представляющая три провода трёх фаз в виде одной линии. На схеме отображаются линии, секции и системы шин, коммутаторы, трансформаторы, устройства защиты.
Структура сети электроснабжения может динамически изменяться путём переключения коммутаторов. Это необходимо для отключения аварийных участков сети, для временного отключения участков при ремонте. Структура сети также может быть изменена для оптимизации электрического режима сети.
Основные компоненты сети
Сеть электроснабжения характерна тем, что связывает территориально удалённые пункты источников и потребителей . Это осуществляется при помощи линии электропередачи — специальных инженерных сооружений, состоящих из проводников электрического тока (провод — неизолированный проводник, или кабель — изолированный проводник), сооружений для размещения и прокладки (опоры, эстакады, каналы), средств изоляции (подвесные и опорные изоляторы) и защиты (грозозащитные тросы, разрядники, заземление).
Вводно-распределительное устройство (также УВР, от Устройство Вводно-Распределительное) — совокупность электротехнических конструкций и аппаратов, предназначенных для приема, распределения, резервирования и учета электрической энергии, устанавливаемая в жилых и общественных зданиях, а также промышленных производственных помещениях (цехах).
Выравнивающий ток — ток, возникающий вследствие разницы потенциалов на двух объектах, заземлённых на разных шинах либо даже на одной шине, если она имеет достаточно большую длину.
На практике выравнивающий ток часто наблюдается при соединении компьютеров в сеть, а также при присоединении компьютеров к контрольно-измерительным приборам и к автоматически управляемым устройствам. Чаще всего он идёт по экранирующей оплётке соединительного кабеля. Выравнивающий ток является переменным с высокочастотными составляющими.
Также подключение однофазной нагрузки в трёхфазную сеть вызывает перекос фаз и появление выравнивающего тока в нейтральном проводнике.
Вред от выравнивающего тока:

    Искажается передаваемый сигнал.
    Может выйти из строя какой-либо чувствительный узел, например, сетевой адаптер.
    При сильных токах наблюдается нагрев отдельных участков, что может привести к пожару.

Кажущаяся польза от выравнивающего тока:

    Если один из связанных приборов (компьютеров) заземлён качественно, то уменьшается опасность для человека на других связанных с ним плохо заземлённых приборах (компьютерах).

Меры борьбы с выравнивающим током:

    зануление всех связанных приборов (компьютеров). Переход на систему TN-S или TN-C-S, чтобы в нулевом защитном проводе не протекало никаких токов в нормальном режиме.
    гальваническая развязка компьютеров и других приборов от сети, или развязка по сигнальным цепям.
    Главный распределительный щит (ГРЩ) — распределительный щит, через который осуществляется приём и распределение электроэнергии по зданию или какой-то его части. Щиты ГРЩ предназначены для приёма и распределения электроэнергии (возможен также учёт) в сетях переменного тока с разделенной землёй и нейтралью (возможно подключение к сетям с глухозаземленной нейтралью (тип заземления TN-C, TN-S, TN-C-S) напряжением до 380В, частотой 50 Гц, защиты линий при перегрузках, утечек и коротких замыканиях. В качестве ГРЩ может служить вводно-распределительное устройство или щит низшего напряжения подстанции. Главный распределительный щит содержит в себе противоаварийную автоматику (например, автоматические выключатели или устройства УЗО), средства учёта электроэнергии (счётчики).
    Различают вводные, секционные и линейные шкафы ГРЩ. Фактически, главный распределительный щит может быть реализован множеством устройств: распределительными панелями ЩО-70, шкафами ВРУ и ШР, распределительными пунктами ПР и другим электрощитовым оборудованием.

Двухфазные электрические сети применялись в начале 20-го века в электрических распределительных сетях переменного тока. В них применялись два контура, напряжения в которых были сдвинуты по фазе друг относительно друга на 90 градусов. Обычно в контурах использовались 4 линии — по две на каждую фазу. Реже применялся один общий провод, имевший больший диаметр, чем два других провода. Некоторые из наиболее ранних двухфазных генераторов имели по два полноценных ротора с обмотками, физически повёрнутыми на 90 градусов.
Разъединитель — контактный коммутационный аппарат, в разомкнутом положении соответствующий требованиям к функции разъединения.
Разъединение (функция
и т.д……………..

Назначение теста

Диагностика уровня развития логического мышления.

Инструкция к тесту

Испытуемым предъявляются на слух задания. В каждом задании два связанных между собой суждения и вывод-умозаключение. Некоторые умозаключения правильны, а другие заведомо неправильны. Требуется определить, какие выводы правильны, а какие ошибочны. Время обдумывания каждого задания – 10 секунд.

Тестовый материал
  1. Все металлы проводят электричество. Ртуть – металл. Следовательно, ртуть проводит электричество.
  2. Все арабы смуглы. Ахмед смугл. Следовательно, Ахмед – араб.
  3. Некоторые капиталистические страны – члены НАТО. Япония – капиталистическая страна. Следовательно, Япония – член НАТО.
  4. Все Герои Советского Союза награждались орденом Ленина. Иванов награжден орденом Ленина. Следовательно, Иванов – Герой Советского Союза.
  5. Лица, занимающиеся мошенничеством, привлекаются к уголовной ответственности. Петров мошенничеством не занимался. Следовательно, Петров не привлекался к уголовной ответственности.
  6. Все студенты высшей школы изучают логику. Смирнов изучает логику. Следовательно, Смирнов – студент вуза.
  7. Некоторые работники 2-го управления – юристы. Фомин – юрист. Следовательно, Фомин – работник 2-го управления.
  8. Все граждане России имеют право на труд. Иванов – гражданин России. Следовательно, Иванов имеет право на труд.
  9. Все металлы куются. Золото – металл. Следовательно, золото куется.
  10. Когда идет дождь – крыши домов мокрые. Крыши домов мокрые. Следовательно, идет дождь.
  11. Все коммунисты выступают против войны. Джонс выступает против войны. Следовательно, Джонс – коммунист.
  12. Все коренные жители Конго – имею темный цвет кожи. Мухамед – имеет темный цвет кожи. Следовательно, Мухамед – житель Конго.
  13. Все студенты 3-го курса выполнили нормы ГТО второй ступени. Володя выполнил норму ГТО второй ступени. Следовательно, Володя – студент 3-го курса.
  14. Некоторые капиталистические страны входят в состав Общего рынка. Австрия – капиталистическая страна. Следовательно, Австрия входит в состав Общего рынка.
Обработка результатов теста

Номера умозаключений, которые следует признать верными: 1, 8, 9.

Все остальные умозаключения следует признать ошибочными, неверными. Если у испытуемого умозаключения оценены иначе, это оценивается как ошибки.

Интерпретация результатов теста
Кол-во ошибок Баллы Уровень развития логичности
0 5 Высокий уровень логичности в рассуждениях, быстро «улавливает» ошибки в чужих рассуждениях
1 4 Хороший уровень логичности
2-3 3 Средняя норма логичности, подчас допускается нелогичность в собственных рассуждениях, не «улавливаются» логические ошибки в чужих сложных рассуждениях
4-6 2 Низкая логичность, частые логические ошибки

Роль электричества в жизни человека

Ни один дом не сможет обойтись без электроэнергии. На работе, в быту и даже в хозяйстве вы и дня без нее не сможете. Электроэнергия – это физический термин, который часто применяется в технике и в быту для определения количества электрической энергии, передаваемую генератором, в электрическую сеть или ту которую получает из сети потребитель. Под определение электричества применяют такие параметры как напряжение, частота и количество фаз, электрический ток. Электрическая энергия также является товаром для энергосбытовых компаний и крупные потребители — участники опта. Электроэнергию вырабатывают на электростанциях, таких как ТЭС (теплоэлектростанция), ГЭС (гидроэлектростанция) и АЭС (атомные станции).

В повседневной жизни электричество сопровождает нас весь день. Ежедневно каждый второй человек включает телевизор, компьютер, а холодильник нуждается в электричестве постоянно. Оно существенно сокращает количество проделанного вами труда вручную. Электроэнергия применяется для освещения помещений и улиц, создания микроклимата (вентиляторы, ионизаторы, кондиционеры, приборы для отопления), хранения продуктов питания (морозилки, холодильники), приготовления пищи (плиты, СВЧ печи, соковыжималки, кофеварки, кухонные комбайны т. д.), уборки квартиры (пылесосы), стирки и сушки белья (стиральные машины, электросушилки и утюги). На заводах или фабриках в электроэнергии нуждаются постоянно. Оно приводит в действие станки, электромашины, компьютеры и т. д. Электричество снабжает дома, при помощи трансформаторных подстанций.

Ни одна стройка не обойдется без электроэнергии, но тут будут также нужны трёхфазные электросчётчики меркурий 230. Для того чтобы что-нибудь построить или сделать ремонт вы не сможете обойтись без электроприборов и электрического оборудования. Например, такого как дрель, болгарка, шуруповерт, перфоратор, бетономешалка многие другие. Кроме этого, если дом строится, так сказать с нуля, работникам нужно будет как-то питаться, в этом тоже электричество поможет, так как существую электроплитки, а если все это действие проходит зимой им нужно еще как-то согреваться, с этим вам поможет электрический обогреватель. Электричество, даже может заменить вам газопровод, при помощи электрокотлов и электроплит. Их недостатком является то, что при отсутствии электричества (по техническим неполадкам или другим причинам) ваши приборы не будут работать и производить тепло. Но для таких случаев существуют генераторы, которые смогут некоторое время снабжать вас электрической энергией.

Эффективное использование электроэнергии в быту

Электроэнергия является неотъемлемой частью нашей жизни: в промышленности, транспорте, сельском хозяйстве, государственных предприятиях, учреждениях.

Все населенные пункты получают электроэнергию от государственных электростанций для производственных и бытовых нужд. О применении электроэнергии для освещения жилищ и в бытовых электроприборах знает каждый.

В быту сейчас используются множество электроприборов, без которых мы не представляем свою жизнь: телевизор, компьютер, холодильник, телефон, электрочайник, микроволновая печь, утюг, пылесос, кухонный комбайн, посудомоечная машина, стиральная машина и конечно осветительные лампы.

Осветительные лампы в наших северных условиях используются продолжительно не только в вечернее, но и в дневное время суток. Поэтому целесообразно для экономии расхода электроэнергии населением в быту, применение современных энергосберегающих осветительных ламп, являющиеся в настоящее время самыми экономичными.

Актуальность. К данной проблеме необходимо обратиться именно сейчас, т. к. современная цивилизация немыслима без широкого использования электроэнергии. А для ее производства затрачивается огромное количество природных энергоресурсов, которые с каждым годом уменьшаются.

При проведении социологического опроса среди знакомых, друзей, соседей, по следующим вопросам:

Пользуетесь ли вы в быту электроприборами и какими?

Знаете ли вы параметры расхода электроэнергии электроприборов используемых в быту?

Какие осветительные лампы используете в своей квартире?

Какие технологии вы используете для экономии электроэнергии?

Знаете ли вы что-либо о энергосберегающих лампочках?

Получились следующие результаты:

Электроприборами пользуются все опрошенные (100%). Холодильником, телевизором, компьютером, утюгом, электрочайником, микроволновой печью, стиральной машиной и др.

Не задумывались(79%).

Обычными осветительными лампами и люминесцентными(92%)

Выключают электроприборы, если они не нужны в применении(83%).

Слышали, но не используют(94%)

Полученные в ходе исследования расчеты показали эффективность использования энергосберегающих осветительных ламп для освещения жилых помещений в целях экономии электроэнергии.

В нашей квартире все осветительные лампы энергосберегающих Они позволяют экономить не только электроэнергию, но и наш семейный бюджет. Я разъясняю всем своим друзьям, знакомым и соседям, о необходимости применения энергосберегающих ламп.

Лампа накаливания

Лампа галогенная

50 ватт

Лампа люминесцентная дневного света

Лампа галогенная

15 ватт

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *